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Abstract—The demand for autonomous systems is rapidly 
increasing all over the world. Both suppliers and consumers 
make every effort to use autonomous systems for their efficiency 
and ease of use.  This technology will bring that efficient and easy 
automated technology to the music industry. Our system is an 
intermediary device, designed to automatically regulate the 
volume of an audio source depending on how much ambient 
noise there is in the surrounding environment. 

I. INTRODUCTION 

Autonomous systems are being used all over the world to 
make tedious tasks disappear. From automatic thermostats 
regulating the heat of buildings everywhere, to the brightness 
on smartphones adjusting the screen brightness depending on 
the light in the surrounding environment. Another nuance that 
many people find themselves facing is volume control. 
Whether it be turning up the volume on a TV or turning up the 
music on a speaker, someone is always adjusting the volume 
of an audio source depending on the ambient noise in the 
surrounding environment. The goal of the dynamic volume 
controller (DVC) in this paper  is to automate that adjustment 
for everyone. 

The development of “smart” homes has been a popular area 
of research recently. There are wide range of ways to connect 
devices like phones, lights, and TVs in order to automate 
tasks. According to an IoT Innovation article, “Utilizing 
integrated technological systems in your home is one of the 
most significant new trends in digital innovation.”[5] Our 
dynamic volume controller would add another element of 
automation to the smart home.  

There have been similar volume controllers created, but 
they are either limited in use to very particular scenarios or 
very expensive. One example is the TOA Electronics Digital 
Ambient Noise Controller.[6] This model is on the market for 
well over a thousand dollars and is meant for large scale 
environments, such as malls and airports. This kind of solution 
is not suitable for a normal consumer looking for a less 
expensive product to use in a smaller scale environment. 
Another product that is currently available is the International 
Control Systems Automatic TV Controller.[7] This system 
works exclusively for when the volume on the TV suddenly 
becomes too loud. We want to make our DVC versatile and 
inexpensive so that it can be a suitable product for the normal 
household consumer wanting to further automate his/her 
house. 

 

 

 

 

 

 

 

We decided on the following requirements to make sure our 
design provides the best experience for users: (1)Easy to use 
phone app will allow user to set fixed level of audibility 
above/below ambient noise, (2) System will not exceed max 
volume setting, (3) System will not react suddenly to isolated 
loud noises, (4) System will function in multiple locations 
within desired room. We chose an iOS app as a user interface 
in order provide something that consumers are familiar with. 
The max volume requirement is in place in order to prevent an 
unstable feedback system, driving the system to an 
unreasonably high volume and possibly causing hearing 
damage. The system must not react to isolated loud noises 
because this would cause rapid changes in volume that would 
be undesirable to the user. Finally, the system must be able to 
function within multiple locations of the desired room to allow 
a flexible and portable system that can be easily moved if the 
dynamic of the room changes. 

The following specifications have been created to make sure 
that the requirements are satisfied.  

Table 1: 
Specifications and requirements 

 

Our device will require an initial calibration by the user in 
the room where the audio source is present. The system would 
then regulate the volume of that audio source by controlling 
what it sends to its speaker. The setup of the system will be 
explained in more detail in the next section of the report. 

 

Requirements Specification Value 

System will not 
exceed max 
volume setting 

Maintain (Signal + 
Noise) to Signal 
Ratio within 
desired range 

1.1-2 

(1.5 for MDR) 

System will not 
react suddenly to 
isolated loud 
noises 

System will react 
to noise above 
desired ratio only 
after a certain time 
period 

TBD 

(Instantaneous 
Reactions for 
MDR) 

Easy to use phone 
app will allow 
user to set fixed 
level of audibility 

System will work 
within a distance 
from audio source. 

20 ft 
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Block Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Figure 1: Block Diagram 

II. DESIGN 

A. Overview 

Our basic design will be a system that lies on the path 
between an audio output signal source, e.g. audio from a 
phone or a TV, and an output speaker to play the source. The 
system will use an external microphone to capture the source 
and environment sound levels. The input sound source signal 
as well as the captured microphone signal will be monitored 
continuously over time. If the system detects a significant 
level of ambient noise (i.e., a large ratio of microphone signal 
volume to expected microphone signal volume based on the 
input signal), then the system will increase the output volume 
that is sent to the speaker until a satisfactory level of 
environment noise to input source signal is regained. 

Our design will center around a Raspberry Pi to regulate the 
entire system. It will be the central hub responsible for 
monitoring the microphone and original audio source signals, 
as well as making the necessary calculations on these signals 
to drive the necessary volume adjustments. The Raspberry Pi 
will ultimately output a value that will program a digitally 
programmable analog amplifier, and that amplifier is what will 
increase the volume of the output signal sent to the output 
speaker. 

As we considered how to build the dynamic volume 
adjustment system, it was clear that we needed a central 
processing unit that would be able to handle the monitoring 
and calculations of several external signals. In addition to 
considering a Raspberry Pi, we first considered an Arduino to 
handle the job. As we looked into an Arduino Uno, we saw 
that it primarily operated with an ATmega328P 
microcontroller, an 8-bit microcontroller with a clock speed of 
16MHz [1]. Additionally, the Arduino had only 32 KB of 
flash memory and 2 KB of SRAM memory for runtime data.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
Lastly, the Arduino’s I/O interface includes only 14 I/O 

pins [2]. We determined that for the live runtime calculation 
necessary for our system, we would definitely need a device 
with higher processing power than that of the ATmega328P, 
and much more memory than that of the Arduino. 
Additionally, the volume adjustment system design requires 
several I/O peripherals (microphone, audio source, output 
signal) to correctly run, and the limitation of 14 digital I/O 
pins would be a hindrance to try and work a solution around. 
That is why we turned to a much more computationally 
capable device—the Raspberry Pi 3 Model B+. The Raspberry 
Pi operates on a 1.4GHz 64-bit quad-core Arm processor. It 
also contains 1 GB of SDRAM memory [3]. These processing 
and memory specifications are much more suitable for the 
level of processing that we will require for live-time audio 
monitoring. Additionally, the Pi includes 4 USB 2.0 ports and 
a 4-pole stereo output port [3], which is suitable for the 
necessary external peripherals that we must connect to the 
DVC. A bonus to the Raspberry Pi is that it contains built-in 
Bluetooth and Wi-Fi capability [3], which allows us to expand 
out to wireless connections with ease; this is a positive, as we 
want to use wireless microphones and connect the system 
wirelessly to a smartphone application. 

Our design will also utilize a digitally programmable analog 
amplifier to control the amplification of the output sound 
signal. We had originally planned to simply digitally scale the 
output signal in software running on the Raspberry Pi before 
the signal was output. However, as we began working on the 
DVC system, we discovered that digitally processing and 
outputting live audio through the Pi resulted in poor quality 
audio. This led us to rearrange the design so that the input 
signal is also routed straight to an analog amplifier, which will 
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be programmed by I/O pins on the Pi itself, which we expect 
to result in much higher quality audio. 

Our block diagram is shown above in Figure 1. As is 
shown, the Raspberry Pi is at the center of the design, 
responsible for taking in the audio source signal, the 
microphone signal, mobile device information, and running 
central computing modules to control the DVC system. The 
mobile device block refers to a smartphone application that 
will allow the user to connect to the system and control certain 
settings. The amplifier will be responsible for modifying the 
volume of the output signal. 

B. Initial Calibration 

The function of the initial calibration stage is to run a 
calibration process that will give the system a sense of the 
expected microphone pickup signal intensity (volume) given a 
certain input signal intensity (volume). This is necessary, as 
the DVC system is designed so that the connected microphone 
can be at a variable distance from the central system, and the 
system may be placed in a wide variety of environments, 
which will result in entirely different signal volume responses. 
The reason that we specifically want this expected microphone 
intensity vs. input intensity and relationship is that if we can 
determine the expected microphone pickup intensity over a 
chunk of time from an input signal, we can compare that 
expected intensity to the actual intensity that the microphone 
is observing. From that comparison, we can determine if the 
actual microphone intensity is significantly higher than the 
expected intensity (i.e., a presence of ambient noise), and if 
that is the case, we can increase the output signal volume to 
combat the ambient noise. 

The user will be able to begin running the calibration 
process through a smartphone application, which is described 
in section C. Running the calibration process will play a 
constant tone signal from low to high volume through the 
output speaker. During this time, the system will record the 
relationship between microphone pickup intensity and input 
signal intensity. The intensities of each are calculated using 
the rms function available in the audioop library of python, 
which calculates the rms over a chunk of values. In the end of 
the calibration stage, the expected microphone intensity vs. 
input signal intensity function will be stored internally, so that 
it may be used later in the “Calculate Expected Mic Level” 
stage, which is defined in section D. After some testing, we 
discovered that this relationship forms a linear function 
(y=mx+b), as exhibited in an example below in Figure 2. 

 
Figure 2. Microphone Pickup Intensity vs. Input signal Intensity Example 
 

We can exploit this knowledge of a linear relationship in 
order to efficiently store the function and use it for later 
calculations. We can use a linear fit function on the data to 
determine the slope m and the y-intercept b, which are only 2 
variables we need to keep to efficiently model the entire 
relationship. Then, given the intensity of an input signal, we 
may calculate: 

Expected Mic. Intensity = m•(Input Signal Intensity) + b     (1) 

The values of m and b are stored in variables within the 
main script at runtime, so that they may be used during the 
current run of the system. These variables are also stored 
externally in a JSON file. This is so that previous calibration 
settings may be loaded and used, so that the user does not have 
to re-calibrate the system each time the system is rebooted. 

C. Smartphone Application 

The app will be the UI that the end user interacts with to set 
their preferences for how the DVC system will operate. 
Within the app there will be three settings that the user will be 
able to change, the threshold, the sensitivity and also the max 
volume. In addition to these setting these preferences the app 
is where the user will start the initial calibration of DVC 
system. From the app these preferences will be sent to the 
Raspberry Pi where they will be used as variables in the main 
program. 

After looking into what platform, the app would be 
developed on it was decided that the focus would be put into 
an iOS app. There were a few factors that went into the 
decision of choosing iOS vs android. One advantage of 
choosing iOS over android is the uniformity of iOS devices. 
When developing for iOS devices factors such as internal 
hardware and external specifications such as screen size are 
known and of a limited number as opposed to the hundreds of 
variations of physical specifications and software versions of 
android devices. For choice of language we will be using the 
Swift programming language because it was designed by 
Apple specifically for iOS development and will help 
eliminate any compatibility errors 

In order to build this app, we will be drawing back on the 
strong programming foundation that we have built up through 
our years of computer science and networking courses. The 
development of the app will use the knowledge that we gained 
in programming courses such as CMPSCI 121, ECE 242 and 
ECE 373. We will also be utilizing information that we 
learned in courses such as ECE 374 to ensure that our app is 
interfacing with the Raspberry pi correctly. 

Testing the app will be a two-part process consisting of a 
qualitative and quantitative test. The app will serve as the UI 
for the DVC system, so it needs to be clear and simple enough 
for an end user not be familiar with audio terminology to use. 
We will test the user friendliness of the app by demoing it to 
small focus groups and collecting feedback. The quantitative 
test will be much easier because, we will be able to see if the 
values being set in the app are being transmitted the software 
correctly. Once we verify that the app is interfacing with the 
Raspberry Pi and that all variables are being set correctly we 
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can move to manipulating those variables in later code 
segments such as the calculate expected mic level and 
Calculate scale factor which are described below. 

D. Calculate Expected Mic Level 

The calculate expected mic level block will be calculating 
the expected microphone intensity given the input signal 
intensity. This calculation will happen continuously over time 
as the system is running as a means to live-monitor the sound 
level of the surrounding environment. This block is 
implemented entirely within software on the Raspberry Pi. 

As mentioned previously in section B., the expected 
microphone intensity vs. input signal intensity function is 
effectively stored and modeled in software by the two values 
m and b that describe the linear relationship. As chunks of an 
input signal come in, the intensity over that chunk is 
calculated using the rms function. Next, the expected 
microphone intensity is calculated by using the input intensity 
as input to Eq. (1). This expected microphone level can then 
be used in further calculations to determine if any volume 
adjustments should be made. 

E. Calculate Scale Factor 

The next step in the core program of the DVC system is 
calculating the scale factor. The scale factor is the amount the 
input audio signal will be multiplied by in order to reach the 
desired output set by the user. In order to calculate this value 
the program starts with default scale factor of 1, meaning the 
input signal is not modified. The system then calculates a ratio 
of the average mic power divided by the average expected mic 
power, this ratio is then compared to the threshold that is set 
by the user in the initial setup and if the ratio is larger than the 
threshold the scale factor is increased slightly until it is no 
longer larger than the threshold. To avoid the system 
becoming unstable the default case for the scale factor 
behavior is too decrease, so that if there is no ambient noise in 
the room the volume of the audio signal will be as quiet as 
possible while still maintaining a level set by the user. Once 
the scale factor is calculated it will be sent over to the GPIO 
pins and used to set the gain of the analog amplifier that will 
be explained in the following section. 

F. GPIO & Amplifier 

This block will make adjustments to the signal sent to the 
speaker. The GPIO pins from the Pi will set the gain of the 
analog amplifier based on the scale factor calculated in the 
previous module. We will use the built in GPIO pins on the 
Raspberry Pi to send a string of bits to an amplifier with a 
digital potentiometer. We will use variable gain techniques 
learned in Electronics II to determine the resistance needed 
from the potentiometer to achieve a specific gain. We will also 
need to become familiar with how to control digitally 
programmable potentiometers. This will depend on the 
specific model we choose. For example, models may have 
different communication set-ups, such as, serial vs parallel bit 
transmission. One commercial model that seems to meet our 
specifications uses two wire I2C communication protocol 

(series bit transmission).[4]  
In order to test this block, we will first create the circuit on 

a breadboard and manually change resistance of the 
potentiometer to make sure we can achieve the desired gain 
range for the amplifier. Once we have confirmed the range of 
resistance needed from the potentiometer, we will order the 
model that best suits this specification. Finally, we will test the 
circuit with the potentiometer and confirm that our speaker 
receives the correct range of amplitudes from this block before 
sending out our PCB design to the manufacturer. 

 

III. PROJECT MANAGEMENT 
Table 2: 

Deliverables 

MDR Deliverables Status 

Show proof of captured signals and 
computed calibration graph 

Complete 

System will adjust based on threshold and 
sensitivity at set value.  

Complete 

Wired connections (no bluetooth) Complete 

Single Speaker System Complete 

 Our group accomplished all MDR goals. Our system achieves 
the base case of increasing volume when there is more than 
1.5 times the expected microphone intensity. Once the volume 
has increased enough so  that the measured mic intensity is 
less than 1.5 times the expected mic intensity, the volume 
stops increasing and tries to decrease. With this base case 
working, it proves that is possible to achieve a fully 
functioning system by demo day. 
    Next semester, most of the work remaining has to do with 
user settings and integration of the dynamic variables 
sensitivity and threshold. Both of these variables are currently 
set on the Pi. In order to choose appropriate ranges for these 
variables, our group plans on testing different values by 
surveying a sample of friends. These surveys will be based on 
overall product satisfaction with regard to response 
time(Sensitivity) and ambient noise to speaker volume 
ratio(Threshold). Once the ranges for these parameters have 
been decided, we will develop the iOS app that allows the user 
to set these variables. 
     Our team consists of three Computer Systems Engineering 
students and one Electrical Engineering student. This means 
that our group has a strong software background. The different 
roles of our project have been split up according to the 
abilities of each member. The chart below shows the 
responsibilities of each team member.  
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 Figure 3: Tasks 
 

     The core software design has been split up between all 4 
group members. This is the largest, and most time consuming 
part of the project. PCB design will be the responsibility of 
Harry, as he is the electrical engineer on the team. Ryan has 
some experience in app development and therefore will handle 
the iOS app for our project.  The other software related parts 
of the project were split up evenly between Nicholas and 
Rahaun, as they are computer systems engineers. 
     In order to keep a workflow and schedule, our team has 
weekly meetings amongst ourselves and with our advisor. The 
communication between our group consists of e-mail, text, 
and in person meetings. So far, we have taken a very unified 
approach towards completing our project.  This means that we 
have been working on our portions of the project together  
rather than combining individual work every week. This has 
worked well so far, but we will likely need to have a more 
individual approach next semester once our system becomes 
more dynamic. 
     The Gantt Chart below shows what we have done so far 
and where we expect to be throughout next semester. 

 
Figure 4: Gantt Chart 

 
 
 
 
 

IV. CONCLUSION 

So far we have met all of our proposed deliverables and 
deadlines for MDR including manually set variables and wired 
connections as well as being able to show proof of captured 
signals, computed calibration graph, and additional graphs 
such as how the scale factor changes over time. By CDR we 
will have a working app so variables will no longer be set in 
code a wireless mic will also replace the current wired version 
and finally our amplification will move to a an analog devices 
instead of being handled internally by the Raspberry Pi. One 
of the main challenges moving forward is making sure that our 
data transmission rates maintain high enough speeds to do our 
signal processing in near realtime after moving to wireless 
components. Another challenge we will face is designing a UI 
that can be easily understood by the a user without any 
knowledge of the system. Seeing as how the last problem is 
not quantitative with a concrete solution, it will be a unique 
challenge that we will have to approach differently from any 
traditional problem we have encountered as engineering 
students. At this point we need to implement a few more 
components such as the analog amplifier and the final system 
enclosure and then the project comes down to a large amount 
of testing and fine tuning in order to create a system that is 
enjoyable and convenient to use. 
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